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Abstract

We propose a lattice Boltzmann method to treat moving boundary problems for solid objects moving in a fluid. The

method is based on the simple bounce-back boundary scheme and interpolations. The proposed method is tested in two

flows past an impulsively started cylinder moving in a channel in two dimensions: (a) the flow past an impulsively

started cylinder moving in a transient Couette flow; and (b) the flow past an impulsively started cylinder moving in a

channel flow at rest. We obtain satisfactory results and also verify the Galilean invariance of the lattice Boltzmann

method.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The lattice Boltzmann equation (LBE) is an explicit time marching finite difference scheme of the

continuous Boltzmann equation in phase space and time [1–3]. The LBE method has a underlying
Cartesian lattice grid in space as a consequence of the symmetry of the discrete velocity set and the fact that

the lattice spacing dx is related to time step size dt by dx ¼ cdt, where c is the basic unit of the discrete

velocity set. This makes the LBE method a very simple scheme consisting of two essential steps: collision

and advection. The collision models various interactions among fluid particles and the advection simply

moves particles from one grid point to the other according to their velocities. The simplicity and kinetic

nature of the LBE method are among its appealing features.

One area in the LBE method which attracts much attention is the boundary conditions in the LBE

method. In particular, a much studied and often used boundary condition is the bounce-back boundary
condition which mimics the particle–boundary interaction for no-slip boundary condition by reversing the

momentum of the particle colliding with an impenetrable and rigid wall. The bounce-back boundary
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condition is most easy to implement and thus most often used in the LBE simulations. It is well understood

now that the bounce-back boundary condition is indeed second-order accurate when the actual boundary

position is considered to be off the grid point where the bounce-back collision takes place [4–8]. The

bounce-back boundary condition is accurate and thus appropriate for very simple boundary geometries

made of straight lines. In dealing with complex geometry of arbitrary curvatures, there are two strategies in

the LBE method. One strategy is to use the body-fitted mesh and employs interpolations throughout the

entire mesh [9,10] in addition to the advection process because the computational mesh does not overlap

with the underlying Cartesian lattice [11,12], bounce-back boundary conditions are applied to the boundary
nodes. The other strategy is to maintain the regular Cartesian mesh and apply interpolations to track the

position of the boundary and the bounce-back boundary conditions are executed at the boundary locations

which may be off the grid cartesian points [13,14]. These methods are mostly applied to simulations of

stationary objects in fluids. We shall follow the latter approach in the present study.

The lattice Boltzmann method has also been successfully applied to simulations of particulate suspen-

sions in fluids [15–17]. In the LBE simulations of the particulate suspensions in a flow, the curved

boundaries of the particles are usually approximated by zig-zag staircase thus bounce-back boundary

condition can be directly applied. Despite the success of the LBE method in this area, there is no rigorous
theory on the treatment of moving boundaries. In this work, we present our first attempt to systematically

study the boundary boundary problem within the framework of the LBE. The method studied in this work

is an extension of the method based on bounce-back and interpolations for curved boundaries proposed by

Bouzidi et al. [13].

This paper is organized as follows. Section 2 describes the generalized lattice Boltzmann equation

(GLBE) of d�Humi�eeres [18–21]. Among its features, the GLBE has superior stability over the popular

lattice BGK equation [22,23]. Section 3 discusses the boundary conditions for the moving boundary

problem, preluded by a brief introduction of the method to treat curved boundaries proposed by Bouzidi et
al. [13]. Section 4 presents the numerical results. We simulate a cylinder asymmetrically placed in a channel

in two dimensions with two types of initial conditions. The first is an impulsively started cylinder with a

constant velocity moving in a transient Couette flow. And the second is an impulsively started cylinder with

a constant velocity in the channel flow at rest. We compare the results of moving boundary simulations with

that of fixed boundary. We therefore verify the Galilean invariance of the LBE method. Finally, Section 5

discusses possible directions to improve the method for moving boundary proposed in this work and

concludes the paper.

2. Description of the model

We consider a two-dimensional LBE model with nine discrete velocities (the D2Q9 model) on a square

grid with grid spacing dx. In the advection step of the LBE, particles move from one node of the grid to one

of its neighbors as illustrated in Fig. 1. The discrete velocities are given by

ea ¼
ð0; 0Þ; a ¼ 0;
ðcos½ða � 1Þp=2�; sin½ða � 1Þp=2�Þc; a ¼ 1–4;
ðcos½ð2a � 9Þp=4�; sin½ð2a � 9Þp=4�Þ

ffiffiffi
2

p
c; a ¼ 5–8;

8<
: ð1Þ

where c ¼ dx=dt, and the duration of the time step dt is assumed to be unity. Therefore c ¼ 1 in the units of

dx ¼ 1 and dt ¼ 1. (In what follows all quantities are given in non-dimensional units, normalized by the grid

spacing dx and time step dt.) At any (discrete) time tn ð¼ ndtÞ, the LBE fluid is then characterized by the

populations of the nine velocities at each node of the computational domain

jf ðrj; tnÞi 
 ðf0ðrj; tnÞ; f1ðrj; tnÞ; . . . ; f8ðrj; tnÞÞT; ð2Þ
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where T is the transpose operator. Here upon the Dirac notations of bra, h�j, and ket, j�i, vectors are used to

denote row and column vectors, respectively. The time evolution of the state of the fluid follows the general

equation

jf ðrj þ eadt; tn þ dtÞi ¼ jf ðrj; tnÞi þ Xjf ðrj; tnÞi; ð3Þ

where collisions are symbolically represented by the operator X.

The LBE is thus a trajectory in a 9� N phase space with discrete time, where N is the number of spatial
grid points under consideration. At each grid point, the state of the system can be represented by a vector

jf i defined by Eq. (2) in a nine-dimensional space F. We can make a linear transformation from F space to

some other space that may be more convenient. In particular, we shall use physically meaningful moments

of the quantities fa that span spaceM. As proposed by d�Humi�eeres [18], we shall use the GLBE in which the

collision process is executed in moment space M.

The mapping between moment space M and discrete velocity space F is one-to-one and defined by the

linear transformation M which maps a vector jf i in F to a vector jf̂f i in M, i.e.,

jf̂f i ¼ Mjf i and jf i ¼ M�1jf̂f i: ð4Þ

The spatial part of the evolution in Eq. (3) is easiest to handle in space F, whereas the collision part in Eq.
(3) is preferably treated in space M both for physical and computational reasons.

With reference to kinetic theory of gases [24,25] and making use of the symmetries of the discrete velocity

set, M is constructed as the following:

M ¼

hm1j
hm2j
hm3j
hm4j
hm5j
hm6j
hm7j
hm8j
hm9j

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

0 0 �2 0 2 1 1 �1 �1

0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ ðjm1i; jm2i; jm3i; jm4i; jm5i; jm6i; jm7i; jm8i; jm9iÞT: ð5Þ

The components of the row vector hmbj in matrix M are polynomials of the x and y components of the

velocities feag, ea;x, and ea;y . The vectors hmbj, b ¼ 1; 2; . . . ; 9, are orthogonalized by the Gram–Schmidt

procedure. Specifically,

Fig. 1. Discrete velocities of the D2Q9 model on a two-dimensional square lattice.
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jm1ia ¼ keak0 ¼ 1;

jm2ia ¼ �4keak0 þ 3ðe2a;x þ e2a;yÞ;

jm3ia ¼ 4keak0 �
21

2
ðe2a;x þ e2a;yÞ þ

9

2
ðe2a;x þ e2a;yÞ

2
;

jm4ia ¼ ea;x;

jm5ia ¼ ½�5keak0 þ 3ðe2a;x þ e2a;yÞ�ea;x;

jm6ia ¼ ea;y ;

jm7ia ¼ ½�5keak0 þ 3ðe2a;x þ e2a;yÞ�ea;y ;

jm8ia ¼ e2a;x � e2a;y ;

jm9ia ¼ ea;xea;y :

ð6Þ

Note that vectors jmbi (and their duals hmbj) are not normalized in order to simplify the expression of M (in

integers). It is interesting to point out that the moments ma ¼ hmajf i are the restriction to a finite number of

velocities of the low order moments of the continuous velocity distribution function used in kinetic theory.

We may give a physical interpretation to the quantities defined above and define the local state in M space

as

jf̂f i ¼ ðq; e; e; jx; qx; jy ; qy ; pxx; pxyÞT; ð7Þ

where m1 ¼ q is the density, m2 ¼ e is related to the kinetic energy, m3 ¼ e is related to the kinetic energy

square. m4 ¼ jx and m6 ¼ jy are x and y components of the momentum density, m5 ¼ qx and m7 ¼ qy are
proportional to the x and y components of the energy flux, and m8 ¼ pxx and m9 ¼ pxy are proportional to
the diagonal and off-diagonal components of the viscous stress tensor.

The collision process in the LBE model is simply modeled by a relaxation process to the chosen equi-

libria with multiple relaxation times. Based upon kinetic theory, we use the following equilibrium distri-
bution functions for the non-conserved moments, which depend only on the conserved moments, i.e., q,
and j ¼ ðjx; jyÞ:

eðeqÞ ¼ �2q þ 3

q
ðj2x þ j2yÞ; ð8aÞ

eðeqÞ ¼ q � 3

q
ðj2x þ j2yÞ; ð8bÞ

qðeqÞx ¼ �jx; ð8cÞ

qðeqÞy ¼ �jy ; ð8dÞ

pðeqÞxx ¼ 1

q
j2x

�
� j2y

�
; ð8eÞ

pðeqÞxy ¼ 1

q
jxjy : ð8fÞ

It should be noted that the energy is not considered as a conserved quantity here because the model is

athermal. (The model does not possess sufficient degrees of freedom to accommodate the dynamics of

P. Lallemand, L.-S. Luo / Journal of Computational Physics 184 (2003) 406–421 409



locally stable heat transport.) With the above equilibrium functions, the sound speed of the system is

cs ¼ 1=
ffiffiffi
3

p
.

In what follows the idea of the ‘‘incompressible’’ LBE [26] is applied to the above equilibria so that q is

replaced by a constant q0 ð¼ 1Þ in the denominators of Eqs. (8a), (8e), and (8f). This choice allows for

better comparison with other incompressible simulations and simpler algebra while retaining correct

acoustics. This approximation means that we neglect terms of order OðM2Þ, where M is the Mach number.

A simple improvement to include compressibility is to consider fluctuation of q with the following ap-

proximation:

1

q
� 1

q0

ð2q0 � qÞ; ð9Þ

where q ¼ q0 þ dq.
The collision process is modeled by the following relaxation equations:

jf̂f �i ¼ jf̂f i � S½jf̂f i � jf̂f ðeqÞi�; ð10Þ

where jf̂f �i denotes the post-collision state, and S is the diagonal relaxation matrix

S ¼ diagð0; s2; s3; 0; s5; 0; s7; s8; s9Þ: ð11Þ

The model reduces to the usual lattice BGK model if all the relaxation parameters are set to be a single

relaxation time s, i.e., sa ¼ 1=s. It should be stressed that the relaxation parameters are not independent in

some cases, as shown in [19,27]. The constraints of isotropy may lead to some relationships between these

relaxation parameters [19,27]. Obviously, the usual lattice BGK model cannot satisfy such constraints.
The LBE model described above is in essence a spectral-type algorithm. The distribution functions are

represented in the orthogonal basis functions constructed from monomials ena;xe
m
a;x (n and m ¼ 1; 2; . . .)

[18,19,27]. The orthogonal basis functions span moment space M. Collision is performed in the space M

among the moments. Then moments are mapped back to the physical space V of jf i to perform advection.

The additional computational effort due to the linear transformations between space V and M is rather

insignificant (ca. 10%), provided some care is given in programming. It is worth the effort in programming

compared to the simple BGK scheme as it is quite superior in terms of numerical stability, can be made

much less sensitive to spurious acoustic waves and is necessary for isotropy for some models, like the ef-
ficient 13-velocity model [20].

3. Boundary condition for moving boundary

Our treatment for a moving boundary is a simple extension of the treatment for a curved boundary

proposed by Bouzidi et al. [13]. This treatment for a curved boundary is a combination of the bounce-back

scheme and interpolations. For the sake of simplicity, this boundary condition is illustrated in Fig. 2 for an
idealized situation in two dimensions. Consider a wall located at an arbitrary position rw between two grid

sites rj and rs, and rs is situated inside the non-fluid region – the shaded area depicted in Fig. 2. The pa-

rameter q defines the fraction in fluid region of a grid spacing intersected by the boundary, i.e.,

q 
 jrj � rwj=dx. It is well understood that the bounce-back boundary conditions place the wall about one-

half grid spacing beyond the last fluid node [5], i.e., q ¼ 1=2, as shown in Fig. 2(a). That is, even though the

bounce-back boundary is executed on the node rj, the actual position of the wall is located at rw which is

about one-half grid spacing beyond the last fluid node rj. Thus one could intuitively picture the bounce-

back boundary as the following: the particle with the velocity e1, starting from rj, travels from left to right,
hits the wall at rw, reverses its momentum, then returns to its starting point rj. This imaginary particle
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trajectory is indicated by the thick bent arrow in Fig. 2(a). The total distance traveled by the particle is one

grid spacing dx during the bounce-back collision, according to Fig. 2(a). Therefore, one can imagine that the

bounce-back collision either takes one time step or no time at all, corresponding to two implementations of

the bounce-back scheme: link and node implementations [15,16], respectively. The difference between these

two implementations is that the bounced-back distributions (e.g., f3 in Fig. 2(a)) at the boundary nodes in

the link implementation is one time step behind that in the node implementation. This difference vanishes

for the steady-state calculations, although these two implementations of the bounce-back boundary con-
ditions have different stability characteristics, because the link implementation destroys the parity sym-

metry on a boundary node, whereas the node implementation preserves the parity symmetry. However, one

cannot determine a priori the advantage of one implementation over the other, because the features of the

two implementations also strongly depend on the precise location of the boundary and the local flow

structure. This issue certainly deserves further study. It is also important to stress the fact that the actual

boundary location is not affected by the two different implementations of the bounce-back scheme – it is

always about one-half grid spacing beyond the last fluid node [5].

With the picture for the simple bounce-back scheme in mind, let us first consider the situation depicted in
Fig. 2(b) in detail for the case of q < 1=2. At time t the distribution function of the particle with velocity

pointing to the wall (e1 in Fig. 2) at the grid point rj (a fluid node) would end up at the point ri located at a

Fig. 2. Illustration of the boundary conditions for a rigid wall located arbitrarily between two grid sites in one dimension. The thin

solid lines are the grid lines, the dashed line is the boundary location situated arbitrarily between two grids. Shaded disks are the fluid

nodes, and the disks (d) are the fluid nodes next to boundary. Circles (s) are located in the fluid region but not on grid nodes. The

square boxes (�) are within the non-fluid region. The thick arrows represent the trajectory of a particle interacting with the wall,

described in Eqs. (14a) and (14b). The distribution functions at the locations indicated by disks are used to interpolate the distribution

function at the location marked by the circles (�). (a) q 
 jrj � rwj=dx ¼ 1=2. This is the perfect bounce-back condition – no inter-

polations needed. (b) q < 1=2. (c) qP 1=2.
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distance ð1� 2qÞdx away from the grid point rj, after the bounce-back collision, as indicated by the thin

bent arrow in Fig. 2(b). Because ri is not a grid point, the value of f3 at the grid point rj needs to be

reconstructed. Noticing that f1 starting from point ri would become f3 at the grid point rj after the bounce-
back collision with the wall, we construct the values of f1 at the point ri by a quadratic interpolation

involving values of f1 at the three locations: f1ðrjÞ; f1ðrj0 Þ ¼ f1ðrj � e1dtÞ and f1ðrj00 Þ ¼ f1ðrj � 2e1dtÞ. In a

similar manner, for the case of qP 1=2 depicted in Fig. 2(c), we can construct f3ðrjÞ by a quadratic

interpolation involving f3ðriÞ that is equal to f1ðrjÞ before the bounce-back collision, and the values of f3 at
the nodes after collision and advection, i.e., f3ðrj0 Þ, and f3ðrj00 Þ. Therefore the interpolations are applied
differently for the two cases:

• For q < 1=2, interpolate before propagation and bounce-back collision.

• For qP 1=2, interpolate after propagation and bounce-back collision.

We do so to avoid the use of extrapolations in the boundary conditions for the sake of numerical stability.

This leads to the following interpolation formulas (where the notations f̂fa and fa denote the post-collision

distribution functions before and after advection):

f�aaðrj; tÞ ¼ qð1þ 2qÞf̂faðrj; tÞ þ ð1� 4q2Þf̂faðrj0 ; tÞ � qð1� 2qÞf̂faðrj00 ; tÞ þ 3waðea � uwÞ; q <
1

2
; ð12aÞ

f�aaðrj; tÞ ¼
1

qð2qþ 1Þ f̂faðrj; tÞ þ
ð2q� 1Þ

q
f�aaðrj0 ; tÞ �

ð2q� 1Þ
ð2qþ 1Þ f�aaðrj

00 ; tÞ

þ 3wa

qð2qþ 1Þ ðea � uwÞ; qP
1

2
; ð12bÞ

wa ¼
2=9; a ¼ 1–4;
2=36; a ¼ 5–8;


ð13Þ

where f�aa is the distribution function of the velocity e�aa 
 �ea, and uw is the velocity of the moving wall at the

point rw in Fig. 2. The case a ¼ 0 is not considered as f0 is known at grid point rj after collision and is not

affected by the advection step. The term in proportion to waðea � uwÞ is the momentum exerted on the fluid

by the moving wall of velocity uw. It can be derived as the following. Suppose a forcing term Fa is intro-

duced due to the fluid–wall interaction, the mass conservation
P

a Fa ¼ 0 and the momentum conservationP
a eaFa ¼ q0uw immediately lead to Fa ¼ 3waðea � uwÞ [28,29]. The correction 1=½qð2qþ 1Þ� for the case of

qP 1=2 is obtained by considering the analytic solution for the Couette flow.

In practice, it is more efficient to combine collision and advection into one step. Because advection

simply corresponds to shifts of indices labeling spatial nodes of ffag, the actual formulas used in simula-

tions are

f�aaðrj; tÞ ¼ qð1þ 2qÞfaðrj þ eadt; tÞ þ ð1� 4q2Þfaðrj; tÞ � qð1� 2qÞfaðrj � eadt; tÞ þ 3waðea � uwÞ; q<
1

2
;

ð14aÞ

f�aaðrj; tÞ ¼
1

qð2qþ 1Þ faðrj þ eadt; tÞ þ
ð2q� 1Þ

q
f�aaðrj � eadt; tÞ �

ð2q� 1Þ
ð2qþ 1Þ f�aaðrj � 2eadt; tÞ

þ 3wa

qð2qþ 1Þ ðea � uwÞ; qP
1

2
: ð14bÞ

The above formulas are implemented as follows. The collision–advection process including the bounce-
back collision with boundaries are divided in the following five steps:
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• Step 1: Compute moments at all fluid nodes.

• Step 2: Relax the non-conserved moments at all fluid nodes, add momentum change if an external force

is presented.

• Step 3: Compute the post-collision distributions ffag at all fluid nodes.
• Step 4: Advect ffag throughout the system, including all fluid and non-fluid nodes. Some distribu-

tions will be advected from fluid nodes to non-fluid nodes, and some from non-fluid nodes to fluid

nodes.

• Step 5: Recompute the distributions that are advected from non-fluid nodes to fluid nodes according to

Eq. (14a) or (14b), depending on the precise location of the boundary (i.e., the value of q).
When boundaries lie in between two nodes of two grid points, the above implementation is equivalent

to the ‘‘node implementation’’ of the bounce-back scheme, i.e., the bounce-back collision does not take

time.
Note that Eq. (14a) is an upwind interpolation, while Eq. (14b) is a downwind interpolation. Both

equations reduce to the elementary bounce-back scheme when q ¼ 1=2. The above formulas have combined

advection and collision steps together, in addition to a correction of about one half grid spacing due to the

bounce-back collision, as illustrated in Fig. 2(a). These formulas are compatible with a quadratic spatial

variation of the fluid velocity u in the vicinity of the boundary and a linear dependence of the equilibrium

distribution functions on the flow velocity u.
The interpolations introduced in the above formulas obviously compromise the mass conservation.

However, this shortcoming can be overcome by considering a more elaborate construction of the local
equilibrium distribution [30], which leads the exact solution for quadratic flows such as the Poiseuille flow

[30]. It should be emphasized that Eqs. (14a) and (14b) only involve the position of a boundary relative to

the computational mesh of Cartesian grids, therefore they can be readily applied in three dimensions. Some

three-dimensional LBE simulations have been carried out this way [14,20,21].

Because the bounce-back scheme is completely independent of the collision process, one can use the

simple BGK algorithm as one wishes. This would only alter Steps 1–3 as discussed above. The treatment for

boundaries remains the same regardless whatever collision algorithm is used.

To extend the above boundary conditions for a moving boundary illustrated in Fig. 3, provided that the
velocity of the moving wall, uw, is not too fast compared to the sound speed cs in the system, one must also

solve the following problem. When a grid point moves out of the non-fluid region into the fluid region to

Fig. 3. Illustration of a moving boundary with velocity uw. The circles (s) and disks (d) denote the fluid and non-fluid nodes, re-

spectively. The squares (�) denote the nodes becoming fluid nodes from the non-fluid nodes at one time step dt ð¼ 1Þ. The solid and

dotted curves are the wall boundary at time t and t þ dt, respectively.
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become a fluid node (indicated by � in Fig. 3, one must specify some number of unknown distribution

functions on this node. We use a second order extrapolation to compute the unknown distribution func-

tions along the direction of a chosen discrete velocity ea which maximizes the quantity n̂n � ea, where n̂n is the

out-normal vector of the wall at the point (marked by } in Fig. 3 through which the node moves to fluid

region. For example, the unknown distribution functions ffaðrÞg at node r as depicted in Fig. 3 can be given

by the following extrapolation formula:

faðrÞ ¼ 3faðr0Þ � 3faðr00Þ þ faðr00 þ e6Þ:

Obviously the method to compute values of the unknown distribution functions (on the nodes which

move from non-fluid to fluid region) is not unique. One could, for instance, compute the equilibrium

distribution functions at r by using the velocity uw of the moving boundary and the averaged density in the

system q0 or otherwise obtained locally averaged density, and use the equilibrium distribution functions for

the unknown distribution functions. Alternatively, one could also systematically update the distribution

functions in the non-fluid regions by performing collisions as in the fluid regions while velocity is kept at the

moving velocity uw of the solid object. All these schemes produce similar results.

As depicted in Fig. 2, the momentum transfer occurred near the boundary along the direction of ea is
equal to

dpa ¼ ea½faðrw; tÞ þ f�aaðrj; tÞ�: ð15Þ

The above formula gives the momentum flux through any boundary normal to ea located between point rw
and point rj in Fig. 2. In the simulations, we use the above formula to evaluate momentum exchange in the

interaction between fluid and solid bodies.

4. Simulations

We conduct numerical simulations to investigate the accuracy of the proposed boundary conditions for a
moving boundary. We use a cylinder asymmetrically placed in a channel in two dimensions as the basic

configuration, as shown in Fig. 4. With different boundary conditions and initial conditions, we can sim-

ulate different flow situations in the channel. The flow simulations can be performed in two frames of

reference. First, the position of the cylinder is fixed on the computational mesh, such that the boundary of

the cylinder is also at rest; and second, the cylinder is moving at a constant velocity with respect to the mesh

thus the boundary of the cylinder is moving. However, the relative motion between the cylinder and the

flow in the channel remains the same in either cases by matching the boundary conditions and forcing in

two frames of reference. By directly comparing the results obtained from these two different settings, one

Fig. 4. Configuration of a two-dimensional flow past a cylinder asymmetrically placed in a channel.
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can test not only the accuracy of the proposed moving boundary conditions, but also the Galilean in-

variance of the LBE method.

The geometric configuration of the following flow simulations is depicted in Fig. 4. A cylinder of

diameter d is asymmetrically placed in a channel of width W and length L. The distance between the

cylinder center and the lower wall of the channel is H . The flow is moving from left to right in the

channel.

We use the following values for three relaxation parameters in the generalized LBE scheme: s2 ¼ s5 ¼ 1:5
and s3 ¼ 1:4, unless otherwise stated (cf. [19] for the significance and proper choice of these relaxation
parameters).

4.1. A cylinder in a transient two-dimensional Couette flow

We first simulate a transient Couette flow past the cylinder moving with a constant velocity ðUc; 0Þ in x-
direction in the channel. Initially the flow is a rest. At time t ¼ 0, the upper and lower walls of the channel

impulsively start to slide in x-direction with velocity ðU0; 0Þ or ð�U0; 0Þ, respectively. Without the cylinder,

the flow in the channel evolves to the steady Couette flow. The cylinder is moving in the fluid with a

constant speed Uc in x-direction. For the sake of simplicity, the periodic boundary conditions are used in x-
direction.

A typical computational domain of the channel is L� W ¼ 201� 101. The diameter of the cylinder is

d=W ¼ 0:25 (d ¼ 25:25). The magnitude of moving velocity at channel walls is U0 ¼ 0:1. The viscosity of
the flow is m ¼ c2s ð1=s8 � 1=2Þ � 1=9 (s8 ¼ 1:2). The shear rate of the flow is defined as j ¼ 2U0=W . The

Reynolds number is

Re ¼ jd2

m
: ð16Þ

With the parameters given above, the Reynolds number is approximately 11.36.

The center of the cylinder is initially located at ðx0; y0Þ ¼ ð30; 54Þ, which is off the centerline of the

channel. We define the eccentricity (in y-direction) of cylinder with respect the channel centerline as

e ¼ 2H
W

� 1; ð17Þ

where H is the y coordinate of the cylinder center. For the above configuration, e ¼ 1=15. The cylinder is

moving with a constant speed Uc ¼ 0:02 in x-direction.
In the frame of reference at rest, the cylinder is moving with the speed Uc with respect to the mesh, thus

the boundary of the cylinder is moving with respect to the mesh. However, in the frame of reference moving

with a constant velocity Uc, the boundary of the cylinder is fixed with respect to the mesh. In this moving

frame of reference, the velocities of the upper and lower walls of the channel are ðU0 � UcÞ and �ðU0 þ UcÞ,
respectively. We simulate the flow in both frames of reference.

Fig. 5 shows the measurements of total force F ¼ ðFx; FyÞ and torque C on the cylinder as functions of

time obtained using two frames of reference, either at rest or moving with the cylinder center. We use the

second-order extrapolations to compute the unknown distribution functions on the nodes emerging from

within the cylinder into the fluid region. The x and y component of the force, Fx and Fy , are the drag and lift

forces, respectively. The forces obtained with the moving boundary (in the rest frame of reference) show a

very small fluctuation around the results computed with fixed boundary (in the moving frame of reference).

The magnitude of fluctuation is remarkably small considering the radius of the cylinder r is only 12.625 grid
spacing.

Fig. 6 shows the same results as in Fig. 5, except that the unknown distribution functions on the nodes

emerging from within the cylinder into the fluid region are approximated by the equilibrium distribution
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functions with the velocity of the cylinder and the averaged density in the system. The fluctuations in the

drag and lift forces and the torque are significantly larger than the results obtained by using the second-

order extrapolations for the unknown distribution functions.

In both cases (by using either the second-order extrapolations or the equilibrium distribution functions

for the unknown distribution functions), the averaged total force and torque obtained in the simulations

with moving boundary are very close to the results obtained in simulations with fixed boundary. The

fluctuation has a period of 1=Uc � 50. Higher frequency fluctuations are due to the movements of grid
points in and out the region inside the cylinder. The results clearly demonstrate the fact that the LBE

method is indeed Galilean invariant.

Fig. 7 shows the contour lines of the stream function at t ¼ 5000. We compare the results obtained by

fixed cylinder boundary (in the frame of reference moving with the cylinder) and by moving cylinder

boundary (in the frame of reference at rest). The second-order extrapolation is used to compute the un-

known distribution functions on the nodes coming out from the non-fluid region to the fluid region. The

difference between the two results is very little. We also compute the L2-normed difference between the two

velocity fields

D2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ku1ðri; tÞ � u0ðri; tÞk2P

i ku0ðri; tÞk
2

s
; ð18Þ

where u1 and u0 are the velocity fields computed with moving boundary and fixed boundary, respectively.

At t ¼ 5000, we found that D2 � 0:12%.

Fig. 5. A cylinder moving with a constant speed Uc ¼ 0:02 along x-direction in a transient two-dimensional Couette flow at

Re ¼ 11:36. Total force ðFx; FyÞ and torque C on the cylinder measured as functions of time t. The second-order extrapolation scheme

was used to compute the unknown distribution functions on the nodes coming out from the non-fluid region to the fluid region. (a) The

drag force fxðtÞ and lift force fyðtÞ; and (b) total torque CðtÞ.
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4.2. Flow past a impulsively started cylinder in a channel

Our second simulation is the flow of a impulsively started cylinder in a channel. The flow configuration is

similar to that of the previous case. At time t ¼ 0, the fluid in the channel is at rest and the cylinder
is impulsively started to move with a constant speed Uc ¼ 0:04 in x-direction. This is equivalent to the

Fig. 7. A cylinder moving with a constant speed Uc ¼ 0:02 along x-direction in a transient two-dimensional Couette flow at

Re ¼ 11:36. Contour lines of the stream function at t ¼ 5000. The solid lines and dashed lines are the results obtained by fixed cylinder

boundary (in the frame of reference moving with the cylinder) and by moving cylinder boundary (in the frame of reference at rest).

Fig. 6. Same as Fig. 5. The equilibrium distribution functions are used for the unknown distribution functions. (a) The drag force fxðtÞ
and lift force fyðtÞ; (b) total torque CðtÞ. Note the fluctuations are much larger than the results shown in Fig. 5.

P. Lallemand, L.-S. Luo / Journal of Computational Physics 184 (2003) 406–421 417



following initial conditions of the flow: the fluid is given an uniform speed Uf ¼ �0:04 ¼ �Uc, so are the

lower and upper walls given a constant speed Uw ¼ �0:04 ¼ �Uc, and the cylinder is at rest. Periodic

boundary conditions are applied in x-direction for both cases. The former case is in the frame of reference at

rest, thus the boundary of the cylinder is moving with respect to the mesh. The latter is in the frame of

reference moving with the cylinder, thus the boundary of the cylinder is fixed while the fluid is moving with

opposite velocity. In both cases, the channel has dimensions L� W ¼ 1001� 101, the radius r ¼ 12,

H ¼ 54, and the initial position of the cylinder is ðx0; y0Þ ¼ ð60:3; 54Þ. The viscosity m is such that the

Reynolds number Re ¼ 2rUc=m ¼ 200.
Fig. 8 shows the drag and lift experienced by the cylinder as functions of time. Shown in the figure are

three sets of results. First, the flow was computed with the fixed boundary of the cylinder. The compu-

tations with boundary of cylinder moving with respect to the mesh were performed by using either the

second-order extrapolations or the equilibrium distribution functions for the unknown distribution func-

tions on the nodes emerging from within the cylinder next to the boundary. Fig. 8(a) and 8(b) compare the

results of moving boundary calculations by using the second-order extrapolations and the equilibrium

distribution functions with the results by using fixed boundary, respectively. The fluctuations due the

movement of the boundary are comparable in either cases. However, there is a phase difference between the
results obtained by using moving or fixed boundary. This phase shift is due to the higher order non-

Galilean effects in the sound speed and viscosities [19].

We compare in Fig. 9 the stream function for the two computations corresponding to Fig. 8(a) at

t ¼ 15,000. The phase shift due to the higher order non-Galilean effects is apparent.

Fig. 8. An impulsively started cylinder moving with a constant speed Uc ¼ 0:04 in x-direction in a two-dimensional channel with

periodic boundary condition in x-direction. Reynolds number Re ¼ 200. Total force ðFx; FyÞ on the cylinder measured as functions of

time t after an initial run time t0 ¼ 14,000. The smooth lines are the results obtained in the frame of reference moving with the cylinder

(the fixed boundary calculation) and the fluctuating lines are the results obtained in the frame of reference at rest (the moving boundary

calculations). (a) The second-order extrapolations are used to compute the unknown distribution functions, and (b) the equilibrium

distribution functions are used for the unknown distribution functions.
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5. Conclusion and discussion

In this work we have proposed a lattice Boltzmann scheme to handle moving boundary problems. The

proposed scheme is robust, stable, and easy to implement. The proposed scheme is tested in the simulations

of two-dimensional flows past an impulsively started cylinder asymmetrically placed in a channel with
different initial conditions. The results obtained with either moving boundary or fixed boundary agree well

with each other. The simulations also verify the Galilean invariance of the lattice Boltzmann method. The

proposed scheme can also be applied in three dimensions.

We note that the treatment of the moving boundary considered here is independent of the collision

model in the LBE method. Therefore, it can be applied to any lattice Boltzmann methods with either

multiple-relaxation-time (MRT) or single-relaxation-time (BGK) models. That is, the GLBE model is not

critical as far as the boundary conditions are concerned. Nevertheless, the MRT models do render much

better numerical stability [19,21], and this is a crucial issue especially when the Mach number is not neg-
ligibly small [19].

We observed in the simulations that, although the LBE method can be used to accurately compute the

total drag and lift forces and total torque exerted on a object moving in a flow, the result of the force at a

particular point at the boundary may not be as accurate as the integrated results. The reason is that there is

a spatial fluctuation in the force depending on the location of the boundary relative to the mesh. There are

several reasons that directly contribute to the fluctuation. First of all, there are grid points moving from

non-fluid region to fluid region or vice versa. Thus the number of fluid nodes is not conserved. That means

the volume (or area) occupied by a rigid moving body is not a constant. As soon as a grid node leaving the
non-fluid region becomes a fluid node, it is immediately treated indiscriminately as other fluid nodes in the

fluid region without taking into account, for instance, the cell associated with the node is only partially in

the fluid region. It would certainly be more sensible to treat these nodes with a finite-volume methodology.

However, this is yet to be formulated on a rigorous basis. Secondly, when a grid point just emerges from the

non-fluid region into the fluid region, the distribution functions must be constructed on this point. The

error in the construction can be an immediate contribution to the fluctuation. And finally, near a fluid node

next to a boundary, the number of the lattice lines intersected with the boundary varies. This number also

varies in time as the boundary is moving. This number directly affects the accuracy of the local fluid fields
and its variation in both space and time therefore also contributes to the fluctuation. However, this local

fluctuation seems canceled out in the integrated quantities, such as the drag and lift forces.

There are other sources of error observed in the simulations. First, the compressibility is one important

source of error because of the velocity-dependence of the transport coefficient. That is a higher order effect

Fig. 9. The stream functions of the flow at t ¼ 15,000 correspond to the two calculations in Fig. 8(a). Solid lines and dashed lines

correspond to results with fixed and moving boundary of the cylinder, respectively.
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of non-Galilean invariance. Such effect can be reduced by increasing the number of discrete velocities.

Secondly, the number of the grid points in the fluid region (or non-fluid region) is not a constant. The grid

points moving in and out of the fluid region to and from the non-fluid region have an immediate effect on

the momentum transfer at the boundary near their vicinities. This effect directly leads to a fluctuation in the

force. And thirdly, the interpolations destroy the mass conservation near the boundary. The inaccuracy in

the evaluation of the momentum transfer at boundary leads to a net mass flux. To reduce or eliminate the

aforementioned errors are the interest of our research in the future.
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